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An efficient palladium-catalyzed decarboxylative acylation of unactivated arenes with a-oxocarboxylic acids is reported. This method provides

a novel access to aryl ketones.

Transition-metal-catalyzed decarboxylative coupling has
attracted considerable attention in recent years.® This
method avoids the preparation and use of stoichiometric
organometallic reagents and produces CO, as the waste
instead of often toxic metal salts. Representative examples
include Pd/Cu-catalyzed decarboxylative coupling of
benzoic acids with aryl halides or surrogates by Goossen,?
palladium-catalyzed decarboxylative Heck-type of olefi-
nation and biaryl coupling of aromatic carboxylic acids
by Meyers® and Forgione,* and Cu-catalyzed decarboxyl-
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ative coupling of potassium polyfluorobenzoates with aryl
iodides or bromides by Liu.® Recent studies showed that
alkenyl® or alkynyl” carboxylic acids, o-oxocarboxylate?®
and potassium oxalate monoesters’ could also undergo
decarboxylative coupling with aryl halides, and thus product
diversity was improved.

Transition-metal-catalyzed cross-coupling directed by
either electronic effects or directing groups is also of
contemporary interest since this method does not require
the prefunctionalization of substrates and is economically
advantageous.™® Inspired by recent studies in this area,™*
decarboxylative coupling of aromatic carboxylic acids with
unactivated arenes has also been achieved.'? However,
transition-metal-catalyzed decarboxylative acylation on
aromatic sp> C—H bonds is rare. Based on the success of

(5) Shang, R;; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H. Z,; Liu, L. Angew.
Chem,, Int. Ed. 2009, 48, 9350.

(6) (8 Wang, Z.Y.; Ding, Q. P.; He, X. D.; Wu, J. Org. Biomol. Chem.
2009, 7, 863. (b) Yamashita, M.; Hirano, K.; Satoh, T.; Miura, M. Org.
Lett. 2010, 12, 592.

(7) (8 Moon, J.; Jeong, M.; Nam, H.; Ju, J;; Moon, J. H.; dung, H. M.;
Lee, S. Org. Lett. 2008, 10, 945. (b) Kim, H.; Lee, P. H. Adv. Synth. Catal.
2009, 351, 2827. (c) Moon, J.; Jang, M.; Lee, S. J. Org. Chem. 2009, 74,
1403.

(8) (8) Goossen, L. J.; Rudolphi, F.; Oppel, C.; Rodriguez, N. Angew.
Chem,, Int. Ed. 2008, 47, 3043. (b) Goossen, L. J.; Zimmermann, B.;
Knauber, T. Angew. Chem,, Int. Ed. 2008, 47, 7103.

(9) Shang, R.; Fu, Y.; Li, J. B.; Zhang, S. L.; Guo, Q. X.; Liu, L. J. Am.
Chem. Soc. 2009, 131, 5738.



C—H activation on 2-phenylpyridine and other nitrogen-
containing substrates,*® herein we describe the first
palladium-catalyzed decarboxylative acylation of unac-
tived arenes with a-oxocarboxylic acids via C—H activa-
tion.

Table 1. Optimization of Reaction Conditions®

g{j Q}\I(OH Ag{i)sah co»oxldant
Dioxane/AcOH/DMSO
120°C O

1a 2a 3a
Ag(I) salt  co-oxidant yield convn
entry PdX, (equiv) (equiv) (%P (%P
1 PA(TFA), AgyCOs3 (3) 61 88
2¢ Ag2003 (3) 0 <1
3¢ PA(TFA), 0 <10
4 PdCl, AgyCO;3 (3) 59 81
5 Pd(OAc), AgyCOs3 (3) 66 86
7 Pd(PhCN),Cl, AgyCOs (3) 73 89
8 Pd(PhCN),Cl, AgOAc (3) 69 91
9 Pd(PhCN),Cl; Ag20 (3) 79 96
10 Pd(PhCN),Cl, AgeO (1) (NHy)2S.05 (2) 38 54
12 Pd(PhCN),Cl, AgyO (1) Oxone (2) 40 67

13° Pd(PhCN).Cl; Ag,0 (2) K;S,04(1) 84(81) 98
14 Pd(PhCN),Cl, Ag.0 (2) 71 87

@ Reaction conditions: 2 equiv of 2a, 10 mol % PdX,, Ag(l) sat (quantity
noted), co-oxidant (quantity noted), 1,4-dioxane/HOAc/DMSO (7.5/1.5/1,
vIvlv, ¢ = 0.1 M), 120 °C, 16 h unless otherwise noted. ° Yields and
conversions are based on 1la, determined by crude H NMR using
dibromomethane as the internal standard. © Without palladium. ¢ Without
Ag(l) salt. ©12 h. "Isolated yield.

Our investigation started with decarboxylative coupling
of 2-phenylpyridine (1a) with phenylglyoxylic acid (2a)
in the presence of 10 mol % Pd(TFA), with 3 equiv of
Ag,CO; as a decarboxylative reagent and oxidant (Table
1). Solvent screening showed that optimal results could
be obtained with a mixture of 1,4-dioxane/AcOH/DMSO
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(7.5/1.5/1, viviv), providing the desired product (3a) in
61% yield with a high conversion (88%, entry 1).
It is important to note that both Pd(TFA), and Ag,CO5™
are required for this coupling reaction; no desired product
could be obtained in the absence of either of these two
reagents (entries 2 and 3). Further study showed that both
Pd(MeCN),Cl, and Pd(PhCN),Cl, could efficiently cata-
lyze the reaction (entries 6 and 7), whereas Pd(OAc), and
PdCI, gave relatively lower yields (entries 4 and 5).
Encouraged by these results, the effect of different silver(l)
salts on this reaction was examined, and it turned out that
the optimal results could be produced with 3 equiv of
Ag,0 in the presence of Pd(PhCN),Cl, as a catalyst (entry
9). Next, the amount of Ag,O was reduced by the addition
of a co-oxidant, and a moderate yield of 3a was obtained
with 1 equiv of Ag,O and 2 equiv of K,S,0g (entry 11).
Further optimization demonstrated that the coupling yield
could be raised to 84% with 2 equiv of Ag,O and 1 equiv
of K,S,0g in 12 h (entry 13). It should be noted that
K,S,0g isrequired for obtaining a high yield since 2 equiv
of Ag,O alone gave 71% yield (entry 14).

The substituent effects of phenylglyoxylic acid on this
reaction were then studied (Table 2). It was noticed that
p-substituted electron-donating groups provided good to
high yields (3b and 3c), whereas the strong electron-
withdrawing group CF; gave a moderate yield (30).
Interestingly, high yields were obtained with p-fluoro (3d),
p-chloro (3€) and p-bromo (3f) substituted phenylglyoxylic
acids, although it is not surprising that halogens were
tolerated under the reaction conditions. Further investiga-
tion showed that electronic properties do not affect the
o-substituted phenylglyoxylic acids since both electron-
donating groups and electron-withdrawing groups gave
good to high yields (70—95%, 3h—k). With a sterically
hindered substrate, a modest yield was obtained (3l), and
it is noteworthy that Pd/Cu(l)-catalyzed decarboxylative
acylation of aryl bromide gave <5% vyield with this
substrate in a previous report.8® In addition, aliphatic
o.-oxocarboxylic acids also provide moderate to good
yields of desired products (30 and 3p).

The results of substituted 2-phenylpyridines (1b—p)
compatibility studies are presented in Table 3. As ex-
pected, a series of functional groups including methyl,
methoxyl, chloro, trifluoromethyl, and acetyl on the phenyl
ring were compatible under the optimal reaction condi-
tions, and the desired products were produced in good to
high yields (4b—n). Interestingly, there does not appear
to be an electronic effect on this substrate since both
el ectron-donating groups and electron-withdrawing groups
at the o-, m-, and p-positions worked efficiently with the
exception of p-CF3, which gave a moderate yield (4l).
Furthermore, benzo[h]quinoline'" worked extremely well
to give 40 in 95% vyield. Acylation of 4,4-dimethyl-2-
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Table 2. Scope of a-Oxocarboxylic Acids®

cat. PA(PhCN),Cla i )I
AgCO;3, K280 N
Dioxane/AcOH/DMSO 2
120°C R
3b-o
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2 Reaction conditions: 2 equiv of 2b—p, 10 mol % Pd(PhCN),Cl,, 2
equiv of Ag,0, 1 equiv of K,S,0g, 1,4-dioxane/HOAC/DMSO (7.5/1.5/1,
vIVIv, ¢ = 0.1 M), 120 °C, 12 h unless otherwise noted. ® Yields isolated
based on 1a. © 3 equiv of Ag,O, without K,S,0. 16 h.

phenyl-4,5-dihydrooxazole** also gave a modest yield of
product 4p.

In summary, an efficient approach for the direct
acylation of the aromatic sp? C—H bond based on a Pd/
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Table 3. Scope of 2-Phenylpyridines®

.rf*i-
H H
P o cat. Pd(PhCN),Cl; P
| Ag:CO3. K;8:05 Rl N
\..N OH o]
rL + 3 Dioxane/AcOH/DMSO
H 120°C
1b-
P 2a abp
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87 FiC 67
b 4
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No
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2 Reaction conditions: 2 equiv of 2a, 10 mol % Pd(PhCN),Cl,, 2 equiv
of Ag;O, 1 equiv of K;,S,0g, 1,4-dioxane/HOAC/DMSO (7.5/1.5/1, viviv,
¢ = 0.1 M), 120 °C, 12 h unless otherwise noted. ® Isolated yields based
onl ©16 h.

Ag bimetallic system has been developed. This novel
method allowed for the decarboxylative cross-coupling of
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unactivated arenes with both aromatic and aliphatic
o.-oxocarboxylic acids.
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